Posts Tagged ‘V-LEDS’

Have you heard of voltage spikes in your cars electrical system? Have you had a set of LEDs burn out after only having them installed for a couple of months? Chances are they were the helpless victims of voltage spikes. These voltage spikes are found in every car or truck. There a few causes of voltage spiking, but they all originate from the alternator. The alternator is the electrical power plant of your car. It charges the battery and provides the power to keep all the electronics in your car operating. We know that your car uses a 12 volt battery, 12 volts DC (direct current). Did you know that your cars alternator actually makes AC (alternating current) power? There is a component called the rectifier that converts the AC voltage into DC voltage. This part is either built into the alternator or mounted separately. The demand of your cars electrical system increases or decrease the load on the alternator. You may have experienced changes in the electrical load of your car, a common example is while you are waiting at a traffic light at night. You may have noticed your  headlights dim for a moment when your cars radiator fan kicked on. That is a change of load on the alternator, the alternator responded by generating more current to keep up with the higher demand created by the radiator fan and the lights returned to their original brightness. This continual up and down cycling of power being generated causes dips and spikes in voltage that over time will degrade the LEDs in your lights.

LED failure caused by voltage spiking is slowly starting to become a problem of the past. V-LEDS incorporates the latest technology on all of our new High Power LED products. We have been incorporating regulated power supplies onto the circuit boards of all of our High Power LEDs. These LEDs are not susceptible to damage caused by voltage spiking. What is the difference and how does it work? Lets take take a look at the difference between standard LEDs and High Power V-LEDS.

In the photo below I have taken apart some highly popular V-LEDs. The 194_HP_W_6K and the 194_5_SMT_W_6K. You can see the difference right away in the circuitry. Lets start with the 194_5_SMT_W_6K. This is easily our most popular LED. Its popularity comes from three places. 1) Price, at $7.99 for a pair you can’t go wrong. 2) Output, Brighter than a filament bulb without blinding you. Great color too 3) Application, with 4 LEDs around the sides and 1 on top it works in pretty much every application. The only downfall to this LED is the circuitry that regulates the power to the individual LEDs. In the photo you can see that  I circled a resistor. This is the component that steps the voltage down to the operating voltage of each LED. If you measure the voltage after it passes through the resistor it reads like this: 12 volts = 9.6 volts, 14.2 volts = 10.2 volts, 19 volts = 13 volts. The LEDs are ran in a series circuit that divides this voltage equally. This means that when operated at 12 volts the voltage is dropped to 9.6 volts by the resistor and is then divided amongst the 5 LEDs. This equals 1.92 volts per LED. This product is designed to be operated around 12 volts give or take a couple of volts. But what if your car has a spike up to 19 volts or greater? By using the same math at 19 volts we end up with each LED seeing 2.6 volts. It doesn’t seem like that much more voltage but the LEDs will get brighter and overheat, thus causing premature failure.

Now look at the 194_HP_W_6K. This is what sets our High Power LEDs apart from our entry level LEDs and from all other LED products on the market today. There is no math needed to show what will happen with different input voltage on this LED. The regulated power supply provides a consistent 3.6 volts to the LED. All of our High Power LEDs are stable from 9-24 volts. It will not affect the brightness of the LEDs at all. We have different variations of High Power LEDs. From our Platinum Series bulbs to our DRL/FOG bulbs to the brightest dome light we sell, all of them use our .5 WATT diode and a regulated power supply that controls the voltage that each LED receives. On our flank LEDs  and DRL/FOG LEDs we have also incorporated Bridge Rectifiers. These components allow for dual polarity use. These LEDs will light up regardless of which way they are plugged in.

To sum it up there is a difference, the V-LEDS difference. We bring “The Latest in Automotive LED Technology” to our customers. With each and every new product we develop it is our goal to raise the bar and bring you the best LED lighting products you can find. Hopefully this will help you understand why some of the LEDs we sell cost more than others. Simply put they are engineered to be better, brighter and last longer than anything else you can find on the market.

If you have questions on our products and how they work you can email me directly here:  tech@v-leds.com

Thanks for reading and feel free to leave a comment, James the tech@v-leds.com

The Idea

There is something to be said about the V-LEDS experience in your car. It is amazing how replacing a bulb with V-LEDS  change the look of your car. Whether you replaced the dome lights or parking lights, using V-LEDS drastically improves the aesthetic appeal of any car. This simple fact spurred on conversations about another product idea. This idea was based on a product we already sell, the switchback. We have been playing around with some prototypes of this new design over the last couple of months and it is turning out to be a really cool idea.

The Concept

The concept is simple. Two different colors of LEDs built onto the same bulb. What if you had the ability to flip a switch and change your high beams or fog lights from white to blue, green, red or amber? That is what the SHO line is, an LED lighting system for showing off. It’s illegal to drive around with blue and green lights on your car. But what about when your car is parked or on display at a car show? With the flip of a switch you can instantly change the look of your car with these new lights.

The Finished Look

Here is what your car can look like with the SHO line by V-LEDS. These will be available soon and we will keep you updated on our plans of releasing them and different applications that they can be used for.

On the Left the SHO lights are white and they change to red by flipping a switch.

Let me know what you think of this concept. What colors would you want to see on an LED like this? You can leave a comment or send me and email to tech@v-leds.com.

Thanks for reading, James

Have you ever gone to start your car in the morning and find that your battery is dead? You end up searching around for jumper cables and calling your neighbor over for a jump start. After you get your car started you notice the dome lights were left on because one of the kids left the door open or you forgot to turn off the map lights the night before. Nothing can be more irritating, especially if you’re already running late for work. The filament bulbs used for lighting the interior of your car use quite a bit of power, more than you would think for such a small bulb. These bulbs can drain your battery down in a matter of hours if left on. All of this could have been avoided if you had just installed some efficient V-LEDS in your dome lights.

V-LEDS bulbs use far less power (80-90% less) than a conventional filament bulb to produce the same amount of light, if not more. You can leave your dome lights on for hours on end without draining the battery after you replaced them with V-LEDS. There are other benefits you will enjoy from using V-LEDS. The solid state design of V-LEDS makes them naturally shock resistant. The vibration of driving down a rough road will cause the filament of a regular bulb to break and burn out over time, something you don’t have to worry about with V-LEDS. The expected lifespan of a V-LEDS dome light is typically 10,000 hours or more!

Chances are you are already using LED technology in your day to day life. From illuminating the buttons on your remote control to  digital road signs and even on your personal electronics like your cell phone and i-pod. LED technology is used across a wide range of products. From illumination in cars to televisions, the possibilities are endless. LEDs are even starting to show up as standard equipment on new automobiles. From tail lights and brake lights to illuminating the interior, LEDs are the lighting of choice as they use less power and never need to be replaced.The good news is that you dont have to buy a new car to enjoy all the benefits of LED technology.

V-LEDS specializes in LED replacements for every type of filament bulb found in automobiles. And its as easy as 1 2 3 to find a V-LEDS replacement for your car. Not only can you get the efficiency of V-LEDS but you can customize the look of your interior with different color V-LEDS. V-LEDS bulbs have incredible benefits over standard bulbs. They are much brighter, operate at cooler temperatures, are extremely energy efficient and have a much longer life span. So go ahead and do yourself a favor, replace your interior bulbs with V-LEDS and avoid that potential morning frustration of jump starting your car.

Examples of V-LEDS dome light bulbs

Things have been pretty busy around the shop lately. New products coming in that need to be tested, vehicle specific kits that needed some tweaking and I did some pretty sweet headlight customization too. I always seem to be writing about how to fix some LED compatibility issue, this time I am going to show off some work I completed recently. V-LEDS sponsored a drift car last year that competed in the Formula Drift circuit. We met a lot of people who are involved with the drift circuit and they quickly caught the V-LEDS lighting bug. One of the teams sent us their headlights and asked us to work our lighting magic on them. Here is what we came up with for this particular set of lights.

Stock 370Z headlights

These lights are from a new Nissan 370Z. They are pretty nice light housings and almost seemed to be begging for V-LEDS touch. We did not get to see any pictures of the car and the race team only had a couple of simple  requests, AMBER LEDs around the projector headlight and to black out all of the chrome. I have been perfecting my headlight baking skills lately while testing our new Bi-Xenon projector upgrade kit and quickly set up my industrial sized easy bake oven.

The V-LEDS industrial sized easy bake oven.

Here it is in all its glory. It doesn’t look like much, but its amazing what a heat gun and a cardboard box can do! After baking the headlights in here for a while I was able to pry the front lens away from the back portion of the housing.

After getting the lights disassembled it was time to get modifying!  Prepping and painting the chrome parts. We had a friend who works at a machine shop cut us out some nice aluminum rings to go around the projector headlight lens. I disassembled some of our 194_HP_A and 194_2_HPFS_W_6K LEDs and soldered wires directly to the circuit boards. I used some epoxy to mount the LEDs to the “landing strip”area of the housing and to the aluminum ring. Here are some pictures that show how the project progressed through some of these steps. I tested the Amber LEDs around in the aluminum ring after it was assembled and it looked pretty dope. At this point I could not wait to get everything done and put back together to see it complete! If you click on the image it will take you to the complete photo gallery on our website.

This project went pretty smooth considering all of the custom fabrication involved. I am very happy with the way they turned out, hopefully the race team likes them too. I can’t wait to see them lit up on the car, but we have to wait until the next race season to see the complete package.

The Final Product

Thanks for checking out my work. Let me know what you think in the comments.

James, the tech@v-leds.com

I have been fielding this question more and more lately. I experienced this problem first hand before I worked here at V-LEDS. I diagnosed the cause of the problem and then I was able to come up with a solution to fix it. Lets find out the cause first.

My experience was stumbled upon after the car I worked on left the shop. The customer called back a short time later and stated that he noticed something weird when he was parking in his garage. When he stepped on the brakes he noticed that the white LEDs that were installed up front were lighting up at the same time. I did not know how to explain this, this was my first time using any products from V-LEDS. I then contacted V-LEDs and asked if anyone had seen or heard of this happening before. At the time they had not. (this was about 3 years ago) So I asked the customer to bring his car back to the shop and leave it with me so I could try to fix the problem. I figured that the source of this problem was the brake lights, because it happened when the brakes were pressed. This particular car, a 2007 Shelby GT 500 uses 3 pair of lights for the tail-lights/brake lights. I used the best of best from V-LEDS, and had installed 3 pair of the 3157_92_R LEDs. Up front I had installed the 3157_60_SMT_WA1_6K. What I noticed was this:  when the parking lights are in the off position the white LEDs on the switchbacks would come on at about half power when the brake lights were on. I removed the taillights and grabbed my DMM (digital multi meter) electrical tester and got to work. The condensed edition of what I found is this: With the Parking Lights off and the Brakes lights on about 5 volts would show up on the parking light circuit. I reinstalled the original filament bulbs and the problem went away. So I concluded that the LEDs were causing the issues. I didn’t think much more at the time other than that it needed to get fixed so the customer could have his car back. I had plenty of electrical components in my shop and went straight for the diodes. I figured i could use a 2 amp diode to keep the +voltage from back feeding into the cars parking light circuit. I installed 6 diodes, 1 for each brake/parking light and it fixed the problem.

This all happened a few years back. Now that it is my full time job to help customers of V-LEDS find solutions for problems that can occur from replacing filament bulbs with LEDs I have seen other variations of this same problem. These include, when the brake lights are on: the dash lights dim, the navigation or radio display dims, and the fog lights come on. Some of you just want to know how to fix it, but others are interested in WHY it is happening in the first place. So I would like to take the time to explain why. Here goes…

There is an electrical component on a circuit board inside the LED bulbs. This component is responsible for the output brightness of the LEDs on the bulb. This means that the LEDs are being run at half power when the parking lights are on, and full power when the brake lights are on. This is how our LEDs differ from a filament bulb. In filament bulb there are 2 separate filaments, a low filament and a high filament. They are not connected internally and they both operate at full 12 volts. Each of the 2 filaments are of different wattage. This is how a dual intensity filament bulb works.

In the pictures below there is a diagram showing how to install the diode inline on the parking light circuit and an illustration that explains how a filament bulb works compared to an LED bulb.It also shows how the voltage back-feed happens.

This diagram shows how to install the diode inline to fix the problem

This illustration shows how a filament bulb works VS an LED replacement bulb.

If you have any more questions about this or if you are experiencing similar problems feel free to contact me via email here:  tech@v-leds.com, and I can give you a hand.

Thanks for taking the time to read through this article, I hope it helped you out.

James, the tech@v-leds.com

Not too many ask this question but I seem to remind a lot of people that they should re-aim their headlights after they install an HID kit. Aiming your lights may seem like a difficult task, but is relatively simple once you understand how to do it. There are a few different resources that I have found useful online and they all follow the same procedure. We will cover this procedure shortly, but first I want to help you understand why this should be taken into consideration.

The first reason that I suggest re-aiming your lights is for safety. Properly adjusted headlights keep you from blinding oncoming traffic. The halogen bulbs you just replaced are about 1/3 as bright as the HID kit you just installed. Your lights may have been out of alignment before, but they were dimmer and it may have not been that noticeable. (if you had to remove your headlight housings during installation you will definitely need to adjust the height and direction of your headlights) But now that you have HIDs installed you are going to notice a difference, and so is everyone else on the road. Whether they were aimed down too low or up too high, properly aligning your headlights will maximize your investment and keep you safe.

Lets move on to the how. A Google search of “headlight adjustment” will bring up a ton of information. I have read through a lot of articles and they all point to the same measurements and distances for properly aligning your headlights. I have assembled what I think is a simple guide to do this. Important things to consider before starting this are: Is your gas tank full? Is your trunk (if it’s a car) or bed (if it’s a truck) full of heavy stuff?(groceries, golf clubs, bricks, wood, sand bags, water bottles etc) Are your tires aired up to the correct pressure? It sounds small but remember that if your car or truck is squatting in the front or rear while you align the lights, your lights will be pointing a different direction when you unload this stuff!

The Following guide is for reference only. I am not citing any DOT laws or claiming that this guide abides by any laws that pertain to your local State or Province. I am simply helping you help me, as I find myself continually blinded by headlights that are aimed incorrectly.

This first illustration shows 2 different distances that you can work with. Choose one of these distances for your car to be from a flat vertical surface (a wall). The diagram on the left is the optimal distance for this procedure. If you do not have that much space to work with you can use the diagram on the right.  Keep in mind that your car needs to be square to this surface and on a level area. You can use the side of a building or your garage door as long your car is on a level surface.

Lets start with measuring out the wall. You will need to use some masking tape to mark these measurements out on the wall. You will need to measure the distance from the ground to the center of the headlight assembly. This is your H Line. Use the masking tape to mark these measurements on the wall. Now locate and mark the center of your car on the wall. This is your V Line. Next measure the distance between the center of your car and the headlights. These are your V RH and V LH lines. Every car is different and these measurements must come from your specific car. When you are done with the measuring and taping your wall should end up with a pattern that looks like this illustration. The dark lines represent the masking tape. The V stands for Vertical, the H stands for Horizontal and the RH and LH represent Left Hand Side and Right Hand Side.

Before we get to aiming your lights you will need to locate the adjustment screw. From my personal experience each cars  headlight has a different style of adjuster screw. If you are having a tough time locating your cars adjustment screw consult your vehicle manual. There should be 2 adjustments per headlight. One is for vertical (up and down) adjustments and the other is for horizontal (side to side) adjustments.

Now its time to turn on your lights. Aim your lights one at a time so there is no interference from the other headlight. (you can disconnect the 12 volt power supply to the HID ballast that is not being aimed to turn it off) This illustration is split into the same 2 distances from before. This illustration has measurements listed as guidelines only. Every car is different and these measurement should be used as a reference point only. Not every car has a distinct cut off line like this illustration shows, but you should see something similar. Above the line should be dark, and it should be very bright underneath. Use the adjustment screws to align your lights as close to this as possible. Perform this for both sides of the car and you’re done. Now its time for the test. When it gets dark go for a drive. How are your lights? Are they too low, or too high now? Can you see better? Are people still flashing their lights at you? From here you can make minor tweaks to the adjustments to dial it in perfectly. This illustration shows measurements for high beams as well. Depending on your car you may be able to adjust them separately from the low beams. If your car has separate adjustments than you can adjust your high beams too. All you have to do is add additional V LH and V RH lines for them and adjust them according to the diagram as well.

The main point to focus on while aiming your lights is to keep them pointed no higher then the headlight assemblies. If your car is lowered your lights won’t reach as far. Remember if you aim them up just a little bit it may be fine at 100 ft. but at 1000 ft. they may be pointing at the tops of trees.  If you you have a lifted truck you may need to aim them down a bit to keep from blinding people too. Just keep that in mind and everyone driving towards you will be happy.

On another note, remember what each set of your lights are for. Your low beams are you main source of light. They are designed to illuminate the ground in front of your car and shouldn’t cast light out too far. Your high beam lights allow you to see beyond the reach of your low beams. And fog lights are designed to illuminate the sides of the road and just in front of your car. Think of them as tools to help you see. You wouldn’t use a hammer to drive in a screw would you? Or a screw driver to drive in a nail? So don’t use your fog lights as low beams, or your low beams as high beams, or your high beams as search lights. Use the correct tool for the job!

Thanks for reading. I appreciate any feedback. Feel free to leave a comment or email me directly if you have any concerns or questions regarding this guide. My email is: tech@v-leds.com

James, the tech@v-leds.com